It's a "Gene-Environment-Immune Complex"...How Mycotoxins impact Lyme, Autism and PANS
Mycotoxins from mold can invade the body thru exposure to contaminated food and water, respiratory inhalation of spores and through contact with mucous and cutaneous membranes.
Decades of data link mycotoxins as a neurotoxic and immunotoxic inducing agent. In fact, several studies that examined the neurocognitive impact of mycotoxin exposure in children show a higher incidence of neurotoxic mold in children with autism spectrum disorder (ASD). Additionally, children exposed to mold for more than two years show a statistically significant drop of 10 IQ points when compared with their mold free counterparts. Extensive exposure in both children and adult show increased pain syndromes, movement disorders like Chorea and Parkinson’s disease as well as neurocognitive disorders akin to dementia and delirium.
Knowing the neurological and immunological effects of mycotoxins from mold exposure, how does it affect those with behavioral, neurological disorders like ASD, autoimmune encephalopathy and pediatric acute-onset neuropsychiatric syndrome (PANS)?
Multiple studies link pathobiology of mold/mycotoxins specifically to Autism and other symptoms that mimic Autism like PANS and autoimmune encephalopathy. Mycotoxins play a gene-environment interaction that is thought to contribute to dysfunctional progression of neurodevelopment.
The mycotoxins once in the body elucidates a strong immune reaction leading to significantly elevated cytokines. These cytokines permeate throughout the body and often cross over the blood brain barrier. Those exposed can experience increased GI permeability or “leaky gut”, elevated oxidative stress responses and inflammation. This appears to stem in the gut where the mycotoxins provoke a reactive oxygen species release in the epithelial cells which line the inner gut wall. The mycotoxins will colonize in the GI system, disrupting the healthy normal flora. As a result of this disruption, a chronic inflammatory response occurs.
Many studies show the link between chronic gut inflammation and neurological and psychological ailments like depression, anxiety, OCD all common symptoms of ASD, neuro-Lyme and PANS/Autoimmune Encephalopathy.
Other studies link mycotoxins to increased autoimmune disorders and development of autoantibodies in the brain. When this occurs, the nervous system is inflamed leading to significant cognitive struggles, brain fog, mood disorders and involuntary tics and movement disorders. This is the typical progression of Autoimmune Encephalopathy, PANS and some components of ASD.
So how does this connect with Lyme?
Applying the inflammatory, immune and GI effects of mycotoxin illness to Lyme simply adds another layer of symptom severity. Lyme and other tick-borne illnesses are known to provoke an inflammatory cytokine response. Borrelia Burgdorferi specifically provokes anti-neuronal antibodies which can travel peripherally causing brain inflammation. The inflammatory response of tick-borne illnesses like Lyme can further trigger leaky gut and blood brain barrier permeability. More circulating cytokines begets increased inflammation and the vicious cycle continues.
Any significant trigger of chronic inflammation in the body can trigger neuroinflammation and leaky gut. Most individual can weather the storm with intact immune systems. Those unfortunate to house genes linked to ASD, methylation dysfunction and/or those afflicted with Lyme, Mold or both struggles to clear the inflammation, compounding the symptomatic response.
A study by DeSantis and others studied 52 Autistic children compared to 58 neurotypical children. Results showed the ASD children had a significantly higher mycotoxin load, specifically Ochratoxin A.
Many integrative providers believe in the Gut-Brain and inflammation connection. This study like many others support this theory and what we as providers see in clinical practice.
Below I’ve provided some leisurely reading. Be well everyone!
Somer DelSignore
1. Boutrif, E.; Canet, C. Mycotoxin prevention and control: FAO programmes. Rev. Méd. Vét. 1998, 149, 681–694. [Google Scholar]
2. Wild, C.P.; Gong, Y.Y. Mycotoxins and human disease: A largely ignored global health issue. Carcinogenesis 2010, 31, 71–82. [Google Scholar] [CrossRef] [PubMed]
3. Pitt, J.I.; Wild, C.P.; Baan, R.A.; Gelderblom, W.A.; Miller, D.J.; Riley, R.T.; Felicia, W.U. Improving Public Health through Mycotoxin Control; IARC Scientific Publications No. 157; World Health Organization: Lion, France, 2012. [Google Scholar]
4. Khlangwiset, P.; Shephard, G.S.; Wu, F. Aflatoxins and growth impairment: A review. Crit. Rev. Toxicol. 2011, 41, 740–755. [Google Scholar] [CrossRef] [PubMed]
5. Monographs on the Evaluation of Carcinogenic Risks to Humans. Some Naturally Occurring Substances: Food Items and Constituents, Heterocyclic Aromatic Amines and Mycotoxins. IARC; World Health Organization and International Agency for Research on Cancer: Lyon, France, 1993; Volume 56.
6. Smith, L.E.; Stoltzfus, R.J.; Prendergast, A. Food Chain Mycotoxin Exposure, Gut Health, and Impaired Growth: A Conceptual Framework. Adv. Nutr. 2012, 3, 526–531. [Google Scholar] [CrossRef] [PubMed]
7. Shephard, G.S.; Burger, H.M.; Gambacorta, L.; Gong, Y.Y.; Krska, R.; Rheeder, J.P.; Solfrizzo, M.; Srey, C.; Sulyok, M.; Visconti, A.; et al. Multiple mycotoxin exposure determined by urinary biomarkers in rural subsistence farmers in the former Transkei, South Africa. Food Chem. Toxicol. 2013, 62, 217–225. [Google Scholar] [CrossRef] [PubMed]
8. Turner, P.C.; Flannery, B.; Isitt, C.; Ali, M.; Pestka, J. The role of biomarkers in evaluating human health concerns from fungal contaminants in food. Nutr. Res. Rev. 2012, 25, 162–179. [Google Scholar] [CrossRef] [PubMed]
9. Wild, C.P.; Turner, P.C. The toxicology of aflatoxins as a basis for public health decisions. Mutagenesis 2002, 17, 471–481. [Google Scholar] [CrossRef] [PubMed]
10. Kensler, T.W.; Roebuck, B.D.; Wogan, G.N.; Groopman, J.D. Aflatoxin: A 50 year odyssey of mechanistic and translational toxicology. Toxicol. Sci. 2011, 120, S28–S48. [Google Scholar] [CrossRef] [PubMed]
11. Groopman, J.D.; Jackson, P.E.; Turner, P.; Wild, C.P.; Kensler, T.W. Validation of Exposure and Risk Biomarkers: Aflatoxin As a Case Study. In Biomarkers of Environmentally Associated Disease Technologies, Concepts, and Perspectives; Wilson, S.H., William, A.S., Eds.; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar]
12. Levy, S.E.; Mandell, D.S.; Schultz, R.T. Autism. Lancet 2009, 374, 1627–1638. [Google Scholar] [CrossRef]
13. Goldberg, W.A.; Osann, K.; Filipek, P.A.; Laulhere, T.; Jarvis, K.; Modahl, C.; Flodman, P.; Spence, M.A. Language and other regression: Assessment and timing. J. Autism Dev. Disord. 2003, 33, 607–616. [Google Scholar] [CrossRef] [PubMed]
14. Lai, M.C.; Lombardo, M.V.; Auyeung, B.; Chakrabarti, B.; Baron-Cohen, S. Sex/gender differences and autism: setting the scene for future research. J. Am. Acad. Child Adolesc. Psychiatry 2015, 54, 11–24. [Google Scholar] [CrossRef] [PubMed]
15. Elsabbagh, M.; Divan, G.; Koh, Y.J.; Kim, Y.S.; Kauchali, S.; Marcín, C.; Montiel-Nava, C.; Patel, V.; Paula, C.S.; Wang, C.; et al. Global prevalence of autism and other pervasive developmental disorders. Autism Res. 2012, 5, 160–179. [Google Scholar] [CrossRef] [PubMed]
16. Liu, L.; Zhang, D.; Rodzinka-Pasko, J.K.; Li, Y.M. Environmental risk factors for autism spectrum disorders. Nervenartz 2016, 87, 55–61. [Google Scholar] [CrossRef] [PubMed]
17. Weber, T.K.; Polanco, I. Gastrointestinal microbiota and some children diseases: A review. Gastroenterol. Res. Pract. 2012, 676585. [Google Scholar] [CrossRef] [PubMed]
18. Sampson, T.R.; Mazmanian, S.K. Control of brain development, function, and behavior by the microbiome. Cell Host Microbe 2015, 17, 565–576. [Google Scholar] [CrossRef] [PubMed]
19. Strati, F.; Cavalieri, D.; Albanese, D.; De Felice, C.; Donati, C.; Hayek, J.; Jousson, O.; Leoncini, S.; Renzi, D.; Calabrò, A.; et al. New evidences on the altered gut microbiota in autism spectrum disorders. Microbiome 2017, 5, 24. [Google Scholar] [CrossRef] [PubMed]
20. Adams, J.B.; Johansen, L.J.; Powell, L.D.; Quig, D.; Rubin, R.A. Gastrointestinal flora and gastrointestinal status in children with autism-comparisons to typical children and correlation with autism severity. BMC Gastroenterol. 2011, 11. [Google Scholar] [CrossRef] [PubMed]
21. Pennesi, C.M.; Klein, L.C. Effectiveness of the gluten-free, casein-free diet for children diagnosed with autism spectrum disorder: Based on parental report. Nutr. Neurosci. 2012, 15, 85–91. [Google Scholar] [CrossRef] [PubMed]
22. EURACHEM, The Fitness for Purpose of Analytical Methods EURACHEM Guide; LGC: Teddington, UK, 1998.
23. Sulyok, M.; Berthiller, F.; Krska, R.; Schuhmacher, R. Development and validation of a liquid chromatography/tandem mass spectrometric method for the determination of 39 mycotoxins in wheat and maize. Rapid Commun. Mass Spectrom. 2006, 20, 2649–2659. [Google Scholar] [CrossRef] [PubMed]
24. Zimmerli, B.; Dick, R. Determination of ochratoxin-a at the ppt level in human blood, serum, milk and some foodstuffs by high-performance liquid-chromatography with enhanced fluorescence detection and immunoaffinity column cleanup—Methodology and swiss data. J. Chromat. B 1995, 666, 85–99. [Google Scholar] [CrossRef]
25. Heyndrickx, E.; Sioen, I.; Huybrechts, B.; Callebaut, A.; De Henauw, S.; De Saeger, S. Human biomonitoring of multiple mycotoxins in the Belgian population: Results of the BIOMYCO study. Environ. Int. 2015, 84, 82–89. [Google Scholar] [CrossRef] [PubMed]
26. Solfrizzo, M.; Gambacorta, L.; Visconti, A. Assessment of Multi-Mycotoxin Exposure in Southern Italy by Urinary Multi-Biomarker Determination. Toxins 2014, 6, 523–538. [Google Scholar] [CrossRef] [PubMed]
27. De Santis, B.; Brera, C.; Mezzelani, A.; Soricelli, S.; Ciceri, F.; Moretti, G.; Debegnach, F.; Bonaglia, M.C.; Villa, L.; Molteni, M.; et al. Role of Mycotoxins in the Pathobiology of Autism: A First Evidence. Nutr. Neurosci. 2017. under review. [Google Scholar]
28. Brera, C.; De Santis, B.; Debegnach, F.; Miano, B.; Moretti, G.; Lanzone, A.; Del Sordo, G.; Buonsenso, D.; Chiaretti, A.; Hardie, L.; et al. External Scientific Report. In Experimental Study of Deoxynivalenol Biomarkers in Urine; EFSA (European Food Safety Authority): Parma, Italy, 2015; Volume 12, Available online: http://onlinelibrary.wiley.com/doi/10.2903/sp.efsa.2015.EN-818/pdf (accessed on 9 June 2015).
29. International Agency for Research on Cancer (IARC). Monographs on the Evaluation of Carcinogenic Risks to Humans; IARC Press: Lyon, France, 2002; Volume 82. Available online: http://monographs.iarc.fr/ENG/Monographs/vol82/mono82.pdf (accessed on 9 June 2015).
30. Duringer, J.; Fombonne, E.; Craig, M. No Association between Mycotoxin Exposure and Autism: A Pilot Case-Control Study in School-Aged Children. Toxins 2016, 8, 224. [Google Scholar] [CrossRef] [PubMed]
31. Mayer, E.A.; Padua, D.; Tillisch, K. Altered brain-gut axis in autism: Comorbidity or causative mechanisms? Bioessays 2014, 36, 933–939. [Google Scholar] [CrossRef] [PubMed]
32. Buie, T.; Campbell, D.B.; Fuchs, G.J.; Furuta, G.T.; Levy, J.; Van de Water, J.; Whitaker, A.H.; Atkins, D.; Bauman, M.L.; Beaudet, A.L.; et al. Evaluation, Diagnosis, and Treatment of Gastrointestinal Disorders in Individuals With ASDs: A Consensus Report. Pediatrics 2010, 125, S1. [Google Scholar] [CrossRef] [PubMed]
33. Fulceri, F.; Morelli, M.; Santucci, E.; Cena, H.; Del Bianco, T.; Narzisi, A.; Calderoni, S.; Muratori, F. Gastrointestinal symptoms and behavioral problems in preschoolers with Autism Spectrum Disorder. Digest. Liver Dis. 2016, 48, 248–254. [Google Scholar] [CrossRef] [PubMed]
34. Matelski, L.; Van de Water, J. Risk factors in autism: Thinking outside the brain. J. Autoimmun. 2015, 67, 1–7. [Google Scholar] [CrossRef] [PubMed]
35. Napolioni, V.; Ober-Reynolds, B.; Szelinger, S.; Corneveaux, J.J.; Pawlowski, T.; Ober-Reynolds, S.; Kirwan, J.; Persico, A.M.; Melmed, R.D.; Craig, D.W.; et al. Plasma cytokine profiling in sibling pairs discordant for autism spectrum disorder. J. Neuroinflamm. 2013, 14, 38. [Google Scholar] [CrossRef] [PubMed]
36. Pecorelli, A.; Cervellati, F.; Belmonte, G.; Montagner, G.; Waldon, P.; Hayek, J.; Gambari, R.; Valacchi, G. Cytokines profile and peripheral blood mononuclear cells morphology in Rett and autistic patients. Cytokine 2016, 77, 180–188. [Google Scholar] [CrossRef] [PubMed]
37. Guo, S.; Nighot, M.; Al-Sadi, R.; Alhmoud, T.; Nighot, P.; Ma, T.Y. Lipopolysaccharide Regulation of Intestinal Tight Junction Permeability Is Mediated by TLR4 Signal Transduction Pathway Activation of FAK and MyD88. J. Immunol. 2015, 195, 4999–5010. [Google Scholar] [CrossRef] [PubMed]
38. Dal Peraro, M.; van der Goot, F.G. Pore-forming toxins: ancient, but never really out of fashion. Nat. Rev. Microbiol. 2016, 14, 77–92. [Google Scholar] [CrossRef] [PubMed]
39. Yamaguchi, N.; Sugita, R.; Miki, A.; Takemura, N.; Kawabata, J.; Watanabe, J.; Sonoyama, K. Gastrointestinal Candida colonisation promotes sensitisation against food antigens by affecting the mucosal barrier in mice. Gut 2006, 55, 954–960. [Google Scholar] [CrossRef] [PubMed]
40. Onore, C.E.; Nordahl, C.W.; Young, G.S.; Van de Water, J.A.; Rogers, S.J.; Ashwood, P. Levels of soluble platelet endothelial cell adhesion molecule-1 and P-selectin are decreased in children with autism spectrum disorder. Biol. Psychiatry 2012, 72, 1020–1025. [Google Scholar] [CrossRef] [PubMed]
41. Atkinson, W.; Sheldon, T.A.; Shaath, N.; Whorwell, P.J. Food elimination based on IgG antibodies in irritable bowel syndrome: A randomised controlled trial. Gut 2004, 53, 1459–1464. [Google Scholar] [CrossRef] [PubMed]
42. Lord, C.; Rutter, M.; DiLavore, P.C.; Risi, S.; Luyster, R.J.; Gotham, K.; Bishop, S.L.; Guthrie, W. ADOS-2—Autism Diagnostic Observation Schedule, 2nd ed.; Lord, C., Rutter, M., Eds.; Western Psychological Services: Torrance, CA, USA, 2012. [Google Scholar]
43. Lord, C.; Rutter, M.; Le Couteur, A. Autism diagnostic interview-revised: A revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J. Autism Dev. Disord. 1994, 24, 659–685. [Google Scholar] [CrossRef] [PubMed]
44. Sparrow, S.S.; Balla, D.A.; Cichetti, D.V.; Reynolds, C.R. Vineland Adaptive-Behavior Scales. J. Couns. Dev. 1986, 65, 112–113. [Google Scholar]
45. Lam, K.S.; Aman, M.G. The Repetitive Behavior Scale-Revised: Independent validation in individuals with autism spectrum disorders. J. Autism Dev. Disord. 2007, 37, 855–866. [Google Scholar] [CrossRef] [PubMed]
46. Griffiths, R. Mental Development Scales from Birth to 2 Years; Manual; Association for Research in Infant and Child Development: Henley, UK, 1996. [Google Scholar]
47. Wechsler, D. Wechsler Preschool and Primary Scale of Intelligence-Revised 517 (WPPSI-R); Psychological Corporation: San Antonio, TX, USA, 1989. [Google Scholar]
48. Wechsler, D. WISC-III: Wechsler Intelligence Scale for Children, 3rd ed.; The Psychological Corporation: New York, NY, USA, 1991. [Google Scholar]
49. Achenbach, T.M.; Rescorla, L.A. Manual for the ASEBA Preschool Forms and Profiles; University of Vermont Department of Psychiatry: Burlington, VT, USA, 2000. [Google Scholar]
50. Achenbach, T.M.; Rescorla, L.A. Manual for the ASEBA School-Age Forms and Profiles; University of Vermont, Research Center for Children, Youth and Families: Burlington, VT, USA, 2001. [Google Scholar]
51. D’Arcangelo, D.; Facchiano, F.; Nassa, G.; Stancato, A.; Antonini, A.; Rossi, S.; Senatore, C.; Cordella, M.; Tabolacci, C.; Salvati, A.; et al. PDGFR-alpha inhibits melanoma growth via CXCL10/IP-10: A multi-omics approach. Oncotarget 2016, 22, 77257–77275. [Google Scholar] [CrossRef] [PubMed]
52. Wilcoxon, F. Individual comparisons by ranking methods. Biometrics 1945, 1, 80–83. [Google Scholar] [CrossRef]
53. Mann, H.B.; Whitney, D.R. On a test whether one of two random variables is stochastically larger than the other. Ann. Math. Stat. 1947, 18, 50–60. [Google Scholar] [CrossRef]
54. Kruskal, W.H.; Wallis, W.A. Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 1952, 47, 583–621. [Google Scholar] [CrossRef]
55. Maranghi, F.; Baldi, F.; Mantovani, A. Sicurezza Alimentare e Salute Dell’Infanzia; Rapporti ISTISAN 05/35; Istituto Superiore di Sanità: Rome, Italy, 2005; Volume 3, p. 139. [Google Scholar]
56. Ubagai, T.; Tansho, S.; Ito, T.; Ono, Y. Influences of aflatoxin B1 on reactive oxygen species generation and chemotaxis of human polymorphonuclear leukocytes. Toxicol. In Vitro 2008, 22, 1115–1120. [Google Scholar] [CrossRef] [PubMed]
57. Richetti, A.; Cavallaro, A.; Ainis, T.; Fimiani, V. Effect of mycotoxins on some activities of isolated human neutrophils. Immunopharmacol. Immunotoxicol. 2005, 27, 433–446. [Google Scholar] [CrossRef] [PubMed]
58. Gauthier, T.; Waché, Y.; Laffitte, J.; Taranu, I.; Saeedikouzehkonani, N.; Mori, Y.; Oswald, I.P. Deoxynivalenol impairs the immune functions of neutrophils. Mol. Nutr. Food Res. 2013, 57, 1026–1036. [Google Scholar] [CrossRef] [PubMed]
59. Melchionna, R.; Romani, M.; Ambrosino, V.; D’Arcangelo, D.; Cencioni, C.; Porcelli, D.; Toietta, G.; Truffa, S.; Gaetano, C.; Mangoni, A.; et al. Role of HIF-1alpha in proton-mediated CXCR4 down-regulation in endothelial cells. Cardiovasc. Res. 2010, 86, 293–301. [Google Scholar] [CrossRef] [PubMed]
60. Yap, C.C.; Winckler, B. Acid indigestion in the endosome: Linking signaling dysregulation to neurodevelopmental disorders. Neuron 2013, 80, 4–6. [Google Scholar] [CrossRef] [PubMed]
61. Cash-Padgett, T.; Sawa, A.; Jaaro-Peled, H. Increased stereotypy in conditional Cxcr4 knockout mice. Neurosci. Res. 2016, 105, 75–79. [Google Scholar] [CrossRef] [PubMed]
62. Abou-Donia MB, Lieberman A, Curtis L. Neural autoantibodies in patients with neurological symptoms and histories of chemical/mold exposures. Toxicol Ind Health. 2018 Jan;34(1):44-53. doi: 10.1177/0748233717733852. Epub 2017 Oct 25. PMID: 29069985.
63. Campbell, AW, Thrasher, JD, Madison, RA. (2003) Neural autoantibodies and neurophysiologic abnormalities in patients exposed to molds in water-damaged buildings. Archives of Environmental Health 58: 464–474.
64. Chin-Chan, M, Navarro-Yepes, J, Quintanilla-Vega, B (2015) Environmental pollutants as risk factors for neurodegenerative disorders: Alzheimer and Parkinson diseases. Frontiers in Cellular Neuroscience 9: 124.
65. Crinnion, WJ (2000) Environmental medicine, part one: the human burden of environmental toxins and their common health effects. Alternative Medicine Review 5: 52–63.
66. Gray, MR, Thrasher, JD, Crago, R. (2003) Mixed mold mycotoxicosis: immunological changes in humans following exposure in water-damaged buildings. Archives of Environmental Health 58: 410–420.
67. Barbara De Santis, Carlo Brera, Alessandra Mezzelani, Sabina Soricelli, Francesca Ciceri, Giorgio Moretti, Francesca Debegnach, Maria Clara Bonaglia, Laura Villa, Massimo Molteni & Maria Elisabetta Raggi (2019) Role of mycotoxins in the pathobiology of autism: A first evidence, Nutritional Neuroscience, 22:2, 132-144, DOI: 10.1080/1028415X.2017.1357793